Pegasus 5. An Automated Pre-
Processor for Overset-Grid CFD

Stuart Rogers
NASA Advanced Supercomputer Division
NASA Ames Research Center
http://people.nas.nasa.qov/~rogers/home.htmi
stuart.e.rogers@nasa.gov

Overset Short Course
September 20, 2010



AC kn OWI ed ge me ntS g

m Pegasus 5 Primary Authors:
Norman Suhs, William Dietz, Stuart Rogers

= Contributing Authors:
Steve Nash, William Chan, Robert Tramel, Jeff Onufer

= Developed with funding from:

x NASA/Boeing/McDonnell-Douglas Advanced Subsonic
Transport Program

= NASA Information Power-Grid Program
= NASA Space Shuttle Program



= Understanding Overset-grid work flow

Outline

m PegasussS features and automation

Auto hole cutting

Interpolation and overlap optimization
Projection

Restarting

Parallelization

m Overview of Usage

Required input

Basic Usage
Understanding the output
Overcoming problems







Overset-CFD Workflow




Pegasus5 Goals and Features =

Fifth-generation overset software
= Written in 1998-2000 as a replacement for PEGSUS4
Primary goal: complete automation of overset process
=  Complexity of CFD problems continues to grow
= Hundreds of overset zones, tens of millions of grid points
= Manual control of process became intractable
Required all-new approach to:
= Hole-cutting
m Overset optimization
Required significant improvements in ease of use
m Parallelization
= Automatic restarts
= Projection
Maintained many PEGSUS4 features, allowing manual control where needed

Pegasusb is mostly automated compared to previous generation, but still requires user
knowledge and expertise



Pegasus5 Approach

Use an Overflow-like namelist input file

= Parsing the flow-solver boundary conditions provides most of required
Inputs about geometry and topology

Use Fortran90

= Extensive use of defined-type data and modules
= Extensive use of process templates and data templates

Oversetting task broken into discrete tasks
= Input to each task saved as one or more files
= Result of each task saved as one or more files
= Faclilitates parallelization
= Enables restarts from partial or aborted run
= Enables rapid restarts after change to inputs

Use lots of computer time and lots of disk 1/0
= Intelligent use of brute-force can solve lots of issues




Auto-Hole Cutting Uses a Cartesian Ma:éff
Example: Multi-element Airfoll

1. Identify the airtight Al
solid-wall surfaces and
overlay with a Cartesian map

2. Find Fringe elements:
any Cartesian element which
intersects the solid wall

4. All others are
Inside Elements

3. Use painting
algorithm to identify §
Outside elements




Auto Hole Cutting:
Cutting of Candidate Points

All volume grid points are tested as
potential hole points:

m Points outside the Cartesian map
are not hole points

m Points contained in an Outside
Element are not hole points

m Points contained in an Inside
Element are hole points

m Points contained in a Fringe ]M e ﬂ
Element undergo line-of-sight
test
= Point A can “see” an Outside

Element without crossing the Solid Surface
solid surface: it is not a hole
point

= Point B can “see” an Inside
Element without crossing the
solid surface: it is a hole point




Interpolation Stencil Search ~

m Pegasus5 searches for all possible interpolation stencil
donors from all zones for every single grid point
= Alternating Digital Tree (ADT) is created for all zones

= For a given grid point and a given donor zone, an ADT
lookup provides a near-by cell in donor zone, then a stencil-
jumping approach finds the exact donor cell and
Interpolation stencil

m All possible donor cells for every single grid point are stored

10



Fringe Point Identification

= A fringe point is one which requires updating in the
flow-solver via interpolation from a neighboring zone

= Outer-boundary fringe points

= All points on the boundary of a zone that do not receive a
flow-solver boundary condition is identified as an outer-
boundary fringe point

= Single or double outer-boundary fringes can be requested
= Hole-boundary fringe points

= Points adjacent to a hole point are identified as hole-
boundary fringe points

= Single or double hole-boundary fringes can be requested

11



_evel-1 Interpolation

m For each fringe point, the best possible
interpolation stencil is chosen amongst all valid

donor cells

= \WWhen multiple donors are available, selection Is
based on measure of interpolation guality and

relative ce
= Any fringe

| size

noint which does not have a valid

donor Is denoted as an orphan point

12



Level-2 Interpolation i

Optimization of overlap

Interpolation points added after to Level-1
Interpolation

Has effect of expanding the automatically-cut holes and
shrinking the outer edges of overlapping zones

Finest grid points remain active interior points

Coarser grid points are interpolated from available
donor cells of finer neighboring zones

Methodology Is robust, requires no user inputs, and
maximizes communication between overlapping zones

13



_evel-2 Interpolation
One Dimensional Example

14



Step 1: Interpolate Between &
Meshes

T Arrow denotes direction of information flow




Step 2: Remove Invalid
Interpolations




Repeat Step 1 and 2 for Other &
Meshes




Step 3: Keep Finest Mesh Points

Field Points




Non-Optimized Overlap Optimized Overlap

19



NS

“s :i

Optimized Overlap Example =

Non-Optimized Overlap Optimized Overlap

20



Projection

m Corrects interpolation problems that may occur
on curved viscous surfaces

m Cell aspect ratio > 1000 near viscous surface IS
typical

m Pegasus 5 projection step alters interpolation
coefficients, not actual grid points

m Projection is performed internally and typically
reguires no user input

21



Problem: Linear Discretization
on Curved Surfaces

Concave Surface Convex Surface

22



Solution: Projection

Recipient Mesh - === Donor Mesh

= === Recipient Mesh Donor Mesh

Points are Projected for Interpolation Only
Original Meshes are Retained

23



Parallelization

Code is composed of many tasks

= Projection, ADT, interpolation, hole-cutting, level-1
Interpolation, level-2 interpolation, etc

= Most tasks are independent of each other

= Each task reads its input from disk files and write their results to
disk files

Parallelization uses Message-Passing-Interface (MPI)
= One master process to monitor and distribute the work
= Many worker processes, one per CPU

Reliably reproduces results of serial code
The larger the grid system, the better the parallel scaling

24



Parallel Speedup: Boeing 777-200 Example {5
SGI Origin: Total CPU time 283 min

# Flap-Hinge
Falring
= -'|“:“'

Inboard
Flaps

22 million points
79 zones

i i i
az
ko, of Processars




PEGASUSS Parallel Scaling %

Harrier grid system: 52 zones, 2.5 million grid points

26



PEGASUS 5 Parallelization

15 Processors on an SGI O2K
Harrier grid system: 52 zones, 2.5 million grid points

Level 1
Interpolation

Auto Hole Prep

Lave| 2
Interpolation

Interpolation

XINTOUT
T3 91.5 10%.8 128.1 146.4 151.5

Time, sec

27



PEGASUS 5 Parallelization

Parallel execution: barrier between ADT and INTERPOLATION

Auto Hole Prep

Interpolation

SRR 41.0
TIME, sec

28



Restarting

Pegasus5 execution consists of many individual tasks

Each task has a defined set of dependencies (inputs) that are stored to a disk
file

Each task results in one or more output files stored to a disk file

Automatically determines which tasks are out of date based on internal time-
stamps of input and output disk files

= Internal time-stamps written as first and last record of each disk file

= An incomplete or inconsistent file is considered out of date
Upon execution pegasusb firsts checks all files and determines which tasks
need to be run
Can successfully restart for:

= Modifications to user inputs or zones

= Addition of new zones

= Incomplete previous run or computer crash

Allows incremental buildup of complex configurations

29



Pegasus5 Inputs =

= Input requirements:
= Standard input file, namelist format

= VVolume grids in individual files:
X_DIR/zonenamel.x, ...., X_DIR/zonenameN.x

m Tools to assist In generating these inputs
= peg_setup script

m Requires Overflow input file and multi-zone plot3d grid
file containing all of the volume grids

= Chimera Grid Tools scripts: BuildPeg5i

30



Pegasusb Input File Example

$GLOBAL
FRINGE
OFFSET

$END

$MESH NAME

$MESH NAME

$MESH NAME

$MESH NAME

$MESH NAME

RN

e i

"body*",

"bodynose”,
"wing*®
"wingcap”,

"wingcol ",

OFFSET used to expand auto hole

KINCLUCE= 2, -2, LINCLUDE= 2,
OFFSET=2, $END

-1

JINCLUDE= 2, -1, LINCLUDE= 2, -1, $END

, $END

$END

$END

31



/"{ﬁ"f— 3

Pegasus5 Input File Example ~

$BCINP ISPARTOF = "body ",
IBTYP = 5, 17, 17, 15, 4 BC'.S (columns)
IBDIR = 3. 2. 2. 1. 5 = viscous wall
JBCS = 1, 1, 1, -1, 17 = symmetry
JBCE = -1, -1 o | 15 = axis
Gl 1, 1 -1, 1
KBCE = -1, 1 -1, -1
LBCS = 1, 1 1, 1
LBCE = 1, -1 -1, -1
YSYM = 1,
$END

Symmetry inY

32



Pegasus5 Execution

= Once you have the input file and the volume
grids are installed in the X_DIR directory you
can execute the code;

= Serial version:;
pegasus5 < peg.1

= MPI Parallel version using SNCPUS cpus:
mpiexec —NP $NCPUS pegasusSmpi < peg.1

= Note: mpi version requires that all CPUs have
access to the same copy of the working directory

St



Pegasuss Output >

m Pegasus5 creates a directory named WORK which contains all of
the intermediate output files created by each internal task
= Typically no need to examine or read these files directly
= In order to re-run a case from the beginning, simply remove WORK

= All informational output written to a file named 1og.mmdd. hhmm.
Examine this file to see what Pegasus5 did

= Note: during execution the mpi version will create multiple log files which
will be concatenated together upon successful completion of the run
log.-mmdd . hhmm. 0000

log.-mmdd . hhmm. 0001
log.mmdd . hhmm.0002
iog-mmdd-hhmm-OOlS

m The xinTouT file contains all of the interpolation stencils and
blanking information used by the flow solver

34



\:’W ,ﬂ,,:j".~
(i &

Post Execution

s Examine log file and verify successful
completion

®  Examine minimum hole cuts and make sure
no active points are left inside a solid body
= Plot hole boundaries in plot3d
= Plot grid slices in overgrid, tecplot, fieldview, etc
= Look for orphan points left inside a solid body

s Examine and eliminate cause of orphan points

35



Mesh Name | Interpolated

| Interpolation

|Boundary Points|Stencil

fuselage |Level
|Level
|Total:
1
|

wing |Level

|Level

|Total:

wingcap |Level
|Level

|Total:

|
10634 | Level
24578 Level

35212 Total:

38609 | Level
49279 ] Level

87888|Total :

20251 | Level
242 | Level

20493 | Total :

8827 | Level
14321 | Level

23148|Total:

|
I 262641 |Level
: 267467 | Level
530108 Total:

|
32934 |1st Fringe:
10498|2nd Fringe:

43432 Total:

30486 |1st Fringe:
12261|2nd Fringe:

42747 Total :

12491 |1st Fringe:
22748|2nd Fringe:

35239 Total :

9584 |1st Fringe:
13172|2nd Fringe:

22756 | Total:

|
I 262641|1st Fringe:
I 267467|2nd Fringe:

530108 | Total :

|Orphan Points

36



End of log file: Execution Time

PROCESS CPU(sec) WALL (sec) Sub-procs Max sub-proc(sec)
projection 13.875 2.328 122 1.672
adt 4._.656 1.266 13 0.906
interpolate 65.922 24 .586 122 3.867
auto_hbound 66.438 26.898 K] 26.906
man_hbound 0.000 0.000 0] 0.000
auto_cut 42.234 4._906 30 4._805
man_cut 0.000 0.000 0] 0.000
comp_hole 1.156 0.141 13 0.125
spec_intl 0.508 0.055 13 0.062
spec_levell 8.078 0.859 13 0.867
levellfix 1.734 2.305 1 1.734
spec_int2 19.859 2.195 61 0.930
spec_level2 9.859 1.023 13 1.016
xintout 1.469 1.477 1 1.469

SUM of PROCESS TIME for all processes (secs): 235.789

ELASPSED WALL TIME(secs): 37.703

EXECUTION SPEED-UP = 6.25 using 15 processors.

37



Output: peg_plot >

m Grid file: use the peg_plot program to create the grid
file used by the flow solver, and to plot and check the
results of the Pegasus5 run

= Use peg plot option 3 first to examine the results of the
hole cutting

m The peg plot options 1 and 2 blank out the higher-level
fringes in the resulting grid file

= This illustrates the borders of where information Is passed between
overlapping zones

m Useful when plotting the flow solution as it minimizes the overlap
= Note: Overflow does not use the iblank array in the
grid file, so any peg_plot option works when creating
the grid file that will be passed to Overflow

38



= \Wing-body example using peg_plot
option 3

= View the fuselage zone in overgrid

= Shows auto hole cut by the wing

= Fringe points shown with colored
symbols




Wing-body example using peg_plot option 2
Higher-level fringe points have been blanked out

Shows the virtual overlap after the Level-2
Interpolation

Flow-solver still keeps the higher-level fringes
active: they can be used as donor cells for other
ZOnes



Examining the Hole Cuts  ~

Use plot3d function
2. plots the outlines of
the holes

Use overgrid, etc:
plot slices through
grids

Search log file for
“composite hole”:
lists number blanked
points in each mesh

Use peg_hole _surf
to extract grid
surfaces used by each
$HCUT auto hole cutter

41



Custom Hole Cutting

H The $HCUT namelists Solid walls of these zones must
form a fully enclosed volume

are used to define

separate auto hole- $HCUT NAI/E = “hcutterl-,
"bodyl”, “body2", /

List of zones
which are cut

cutters I\IAEEA:EEEE = "bodynose®, "wing";

- By default, 1o WZJrI:I?(CZI '.512 CNY = 512, CNZ = 512
$HCUT namelist is CARTX = -100.0. 100.0, g
Included in input file, {CARTY = -50.0, 50.0,
and pegasus5 uses g’;ﬁgz = O OO
ALL solid-wall
surfaces to cut holes
from ALL zones Bounding box of hole cutter

= Adding an $HCUT
entry eliminates this 42



Custom Hole Cutting =

$HCUT NAME = “winghole”,
MEMBER = “wing’, “wingcol®, “wingcap”, “body",
INCLUDE = "body", "wingbox®, “bodybox", “farbox’,
CARTX = 100.0, 400.0,
CARTY = 10.0, 150.0,
$END




Custom Hole Cuttin 9 &

$HCUT NAME = “wingholel”,

MEMBER = “wing’, “wingcol”, “body",
INCLUDE = "body®", "wingbox®, “bodybox", “farbox’,
CARTX = 100.0, 250.0,
CARTY = 10.0, 51.0,
$END
$HCUT NAME = “winghole2”,
MEMBER = “wing”’,
INCLUDE = "wingbox®, “farbox”,
CARTX = 200.0, 350.0,
CARTY = 50.0, 101.0,
$END

$HCUT NAME = “winghole3*,

MEMBER = “wing’, “wingcap”,
INCLUDE = “"wingbox®, “farbox’,
CARTX = 240.0, 400.0,

CARTY = 100.0, 150.0,

$END

44



et fa
o o

Hole-Cutting Troubleshooting

A

No holes cut due to leak or gap in solid-wall surfaces

m Use CARTX,CARTY,CARTZ to seal gap

m Use PHANTOM zone to seal gap

= Edit input file and extend solid-wall boundary
Holes too small near thin bodies, such as TE of a thin wing:

m Increase OFFSET to enlarge holes

m Increase CNX, CNY, CNz to improve resolution of Cartesian map
Hole points not cut properly near collar grids

= Increase OFFSET to enlarge holes
Holes cut at zone edges adjacent to solid walls in regions of high
curvature — can occur with inadeqguate resolution relative to
curvature

= Increase grid resolution
m Use $REGION and $volLUME namelists to “unblank™ holes

45



Manual Hole Cutting 2

= Manual hole-cutting functionality from pegsus4 has
been retained In Pegasusb

= Can be used as an additional tool to refine holes

= $BOUNDARY/$SURFACE hamelists

= Cans specify a group of zonal surfaces which will cut holes In
the specfied zones

= $BOUNDARY/$BOX hamelists

= Can specify range of x,y,z coordinates of a box which will cut
holes in the specified zones

= $REGION/$SVOLUME namelists

= Can specify range of J,k,| zonal indices to create a hole or to
unblank part of an eX|st|ng hole

46



Orphan Points 0

Orphan points are fringe points for which no valid interpolation
donor can be found

Orphans are reported in the log file, in the output of peg plot,
and using the peg_orph program

2"d-level fringe-point orphans are reset to active interior points
Overflow will update the solution data at orphan points by
averaging the neighboring grid points

= A few isolated orphan points are usually acceptable, but it is advisable to
find and fix most or all orphans

= Orphans on solid-wall surfaces usually indicate a serious problem with
surface resolution or projection, and should be fixed

Plot orphans using the plot3d or overgrid programs

47



Causes of Orphans

= Bad hole cuts
m Insufficient overlap

m Poorly resolved geometry in regions of surface
curvature

= Inappropriate or missing boundary conditions

48



m Possible fixes:

= Increase surface-grid
overlap

= Add more splaying to the
boundary conditions in
hypgen

= Add a cartesian box grid
to resolve the open space

49



Util Ity Codes 5

peg_setup: Creates

peg_hole_surf. creates plot3d grid files containing
surfaces of each SHCUT entry

peg_plot: creates composite plot3d grid file

peg_diag: produces diagnostic file for plotting
Interpolation parameters and connection info

peg_orph: lists orphan points for each zone
peg_proj. creates diagnostic plot3d files for projection
XINtegrity: Verifies integrity of the XINTOUT file

50



Summa ry 2

m Pegasus5 successfully automates most of the
oversetting process

= Dramatic reduction in user input over previous generations
of overset software

= Reduced complex-geometry oversetting time from weeks to
hours

= Significant reduction in user-expertise requirements

= Not a “black-box” procedure: care must be taken to
examine the resulting grid system

= Additional documentation and examples available

online:
http://people.nas.nasa.gov/~rogers/pegasus/status.html

51



Nomenclature

Grid System: A collection of zones together with boundary conditions and connectivity data
ready to input into a flow solver

Zone: a single structured grid composed of ordered grid points

Cell: a hexahedron composed of 8 grid points and 6 faces

Grid point: a single point in a zone identified uniquely by its j,k,I indices

Fringe point: a grid point which will be updated in the flow-solver via interpolation of data from
a neighboring zone

Outer-boundary fringe point: a fringe point on the boundary edge of a zone

Hole-boundary fringe point: a fringe point adjacent to a hole point

Hole point: a grid point which has said to have been “blanked out” and whose data will not be
used by the flow solver

Orphan point: a fringe point for which a valid donor cell cannot be found
Interior point: a grid point which does not lie on the zonal boundary

Iblank value: each grid point is assigned an integer value to denote type of point:
= iblank<O0: fringe point
= iblank=0: hole point
= iblank=1: active interior point
= iblank=101: orphan point

52



